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Abstract

The concern of this work is a consequent exploitation of the notion of material forces for the application within

hyperelastostatic fracture mechanics. Contrary to physical forces, material forces act on the material manifold, thus

essentially representing the tendency of defects like cracks or inclusions to move relative to the ambient material. Based

on the formulation of the appropriate quasi-static balance laws in the material space we aim at a fresh look onto

classical aspects of hyperelastostatic fracture mechanics. Operating throughout within the geometrically nonlinear

setting we emphasize on the one hand the duality of the direct and the inverse motion description and on the other hand

we re-establish the classical path integrals from elementary equilibrium considerations in the material space. Ó 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Based on the reformulation of common physical balance equations on the material manifold, essentially
obtained by appropriate pull-back operations, many aspects of hyperelastostatic fracture and defect me-
chanics can be clari®ed in a uni®ed framework. In particular, well-known path integrals together with the
discussion of their path independence are re-established from elementary equilibrium type considerations.
To this end, the pertinent balance equations together with the corresponding ¯uxes pertaining to the direct
and the inverse motion description have to be considered in parallel. This viewpoint embraces a number of
classical continuum mechanical aspects and opens the door for new computational strategies, which will be
treated separately in the second part of this work.

The concept of an energy-momentum tensor is in the heart of the present treatise. It has been introduced
by Eshelby (1951, 1956, 1970, 1975) in the early 1950s to study defects in elastic continua. To honor
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Eshelby, we will therefore address the energy-momentum tensor in the sequel as the Eshelby stress,
moreover for the branch of continuum mechanics dealing with singularities and inhomogeneities. Maugin
(1993) recently coined the terminology Eshelbian mechanics. The forces associated with the Eshelby stresses
are commonly denoted con®gurational, quasi-Newton or rather material forces, (e.g. Rogula, 1977),
whereby we will adopt the latter terminology in the sequel.

Conservation laws in hyperelasticity resulting from Noether's theorem were studied e.g. by G�unther
(1962), Knowles and Sternberg (1972), Fletcher (1976), Rogula (1977) and Olver (1984). Clearly, conser-
vation laws are closely related to solenoidal, i.e. divergence free ®elds and consequently to path independent
integrals.

Consequently, as an early outcome of these investigations three path independent integrals, which are
commonly referred to as J- L- and M-integral, have been discovered. Thereby, it turns out that the Eshelby
stress is the main ingredient of these integrals. The application of the path independent J-integral to
fracture mechanics was earlier proposed in the celebrated publication by Rice (1968), the interpretation of
the J- L- and M-integrals as being energetically conjugated to translations, rotations and scale changes of
defects within elastic material goes back to Budiansky and Rice (1973). Applications of a variant of the M-
integral in ®nite elasticity are considered by Green (1973).

The inverse motion point of view is intimately related to the aforementioned developments. Thereby,
inverse motion problem and its duality with the direct motion problem, in particular the duality of the
Cauchy stress and the Eshelby stress, has been studied by Shield (1967), Chadwick (1975), Ogden (1975)
and Golebiewska-Herrmann (1981), among others.

In his re¯ections on the general theory of energy-momentum tensors in elastostatics Hill (1986) inves-
tigated the implications of the energy-momentum tensor on the changes in potential energy of a hyper-
elastic continuum due to arbitrary variations of material inhomogeneities.

The application of the notion of material forces to classical strength of materials problems within the
elementary beam theory has been considered e.g. by Kienzler (1986) and Kienzler and Herrmann (1986a,b).
More recently, e.g. Stumpf and Le (1990) and Maugin and Trimarco (1992) developed the variational
setting of Eshelbian mechanics with particular application to brittle fracture. As an extension, Maugin
(1994) further investigated the relation between material forces and the J-integral for dynamical fracture in
elastic and electromagneto-elastic continua. A comprehensive treatment of material inhomogeneities in
elasticity is presented in the recent monograph by Maugin (1993) which promotes as well the concept of
material forces.

It is the objective of this work to shed an alternative light on di�erent aspects of hyperelastostatic
fracture mechanics based on the consequent use of the concept of material forces. Thereby, even if many
hyperelastic fracture mechanics problems are characterized as being brittle and may therefore be solved
within the geometrically linear setting, it is not by snobbery or some mathematical pedantry, but for its
heuristic value that we present all developments ®rst in the frame of ®nite strains, as Maugin (1995) clearly
pointed out.

To this end, Part I is organized as follows: In Section 2, the kinematics of the direct and the inverse
motion description are brie¯y reiterated. In Section 3, we contrast the common physical viewpoint,
resting on the the concept of physical surface and volume forces in the sense of Newton, with the
complementary material viewpoint, based on the concept of material surface and volume forces in the
sense of Eshelby. Then, Section 4 develops the pertinent hyperelastic stress measures and the quasi-static
balance equations for the physical and the material viewpoint. These balance equations are subsequently
related to an appropriate variational setting in Section 5. Finally, Section 6 re¯ects on the motivation of
the classical path integrals based on the aforementioned developments. We ®nally close with conclusions
in Section 7.

The computational setting emanating from the advocated view on the application of material forces to
hyperelastostatic fracture mechanics is highlighted separately in the forthcoming Part II of this work.
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2. Kinematics

To set the stage, we brie¯y reiterate the geometrically nonlinear kinematics of the direct and the inverse
motion description.

2.1. Direct motion description

In the direct motion description the placement x of a material particle in the current con®guration B is
described by the nonlinear direct deformation map x � u�X� in terms of the placement X of the same
material particle in the reference con®guration B0 (Fig. 1). The direct deformation gradient, i.e. the linear
tangent map associated with the direct deformation, together with its determinant are denoted by F � rX u

and J � det F, respectively. Typical strain measures are then de®ned by the right and left Cauchy±Green
strain tensors C � F t � F and b � F � F t, respectively, of the direct motion.

For later use, we note that for a direct deformation relating compatible con®gurations B0 and
B � u�B0�, the integrability condition for the direct deformation gradient reads RotF � 0 and renders the
identity rX F t : ��� � ��� : rX F for any second order two-point tensor ��� mapping between the tangent
spaces to B0 and B.

Moreover, we de®ne the physical variation of a quantity ��� at ®xed reference placement X as
dX ��� � d� ����u� �du; X�� ���0 with the obvious commutation rule rX dX ��� � dXrX ���. As an example, we
note that dX F � rX du rendering the physical variation of Fÿ1 as dX Fÿ1 � ÿFÿ1 � rxdu. Likewise, we
obtain the physical variation for the inverse of u as dX uÿ1 � ÿFÿ1 � du, Maugin and Trimarco (1992).

2.2. Inverse motion description

Accordingly, in the inverse motion description, the placement X of a material particle in the reference
con®guration B0 is described by the nonlinear inverse deformation map X � /�x� in terms of the place-
ment x of the same material particle in the current con®guration B (Fig. 2). The inverse deformation
gradient, i.e. the linear tangent map associated to the inverse deformation, together with its determinant are
denoted by f � rx/ and j � det f , respectively. Typical strain measures are then de®ned by the left and
right Cauchy±Green strain tensors c � f t � f and B � f � f t, respectively, of the inverse motion.

Again, for later use, we note that for an inverse deformation relating compatible con®gurations B and
B0 � /�B�, the integrability condition for the inverse deformation gradient reads rot f � 0 and renders the
identity rxf

t : ��� � ��� : rx f for any second order two-point tensor ��� mapping between the tangent
spaces to B and B0.

Moreover, we de®ne the material variation of a quantity ��� at ®xed current placement x as
dx��� � d� ����/� �d/; x�� ���0 with the obvious commutation rule rxdx��� � dxrx���. As an example, we note

Fig. 1. Kinematics of the direct motion description: direct deformation map and corresponding deformation gradient together with left

and right Cauchy±Green strain tensors (reference placement and identity map).
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that dx f � rxd/, rendering the material variation of f ÿ1 as dxf
ÿ1 � ÿf ÿ1 � rX d/. Likewise, we obtain the

material variation for the inverse of / as dx/
ÿ1 � ÿf ÿ1 � d/, see Maugin and Trimarco (1992).

Remark 2.1. Please note that the direct and the inverse motion descriptions are related by the identity maps
idB0

� / � u�X� and idB � u � /�x� together with the inverse relations Fÿ1 � f � u�X� and f ÿ1 � F � /�x�,
whereby � denotes composition.

3. Physical versus material viewpoint

In this section, we emphasize the formal duality of physical and material forces acting on arbitrary
subdomains of a body and the corresponding quasi-static equilibrium conditions.

To this end, as a conceptual motivation, we note on the one hand that physical forces in the sense of
Newton together with their ®rst order moments are generated by variations relative to the ambient physical
(euclidian) space E3 at ®xed position in material space. Accordingly, on the other hand, material forces in
the sense of Eshelby together with their ®rst order moments are generated by variations relative to the
ambient material (manifold) space M3 at ®xed position in physical space. In the following quasi-static
equilibrium conditions for physical and material forces together with the corresponding conditions for their
®rst order moments are stated in global form. Thereby we assume that physical and material surface
tractions and volume forces are given, ignoring the fact that the material forces are only known a posteriori,
i.e. when the direct motion problem has already been solved. Moreover, the detailed outline of the format
of the Eshelby stress and the material volume force is postponed until the next section.

3.1. Physical viewpoint of direct motion description

First, we consider an arbitrary subdomain V with boundary oV of the current con®guration B (Fig. 3).
We assume that the subdomain is loaded along oV by physical surface tractions in terms of the spatial
Cauchy stress r and the current surface normal n and within V by physical volume forces in terms of
distributed physical volume forces bphy, e.g. gravity.

3.1.1. Physical forces
Therefore, we may de®ne the resultant physical surface and volume forces acting on V as

Fphy;sur �
Z

oV
rt � nda and Fphy;vol �

Z
V

bphy dv: �1�

Then, the familiar statement of quasi-static equilibrium of physical forces for the subdomain with current
con®guration V writes along the lines of Newton and Cauchy as

Fig. 2. Kinematics of the inverse motion description: inverse deformation map and corresponding deformation gradient together with

left and right Cauchy±Green strain tensors (current placement and identity map).
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Fphy;sur � Fphy;vol � 0: �2�

3.1.2. Vectorial moment of physical force
Likewise, with r 2 E3 denoting the distance vector to a ®xed point in (3d) physical space and

axl��� � ÿ1
2
��� � I denoting the axial vector of a second order tensor ��� in V we may de®ne the resultant

vectorial moment of physical surface and volume forces acting on V as

Tphy;sur �
Z

oV
r� rt � nda; �3a�

Tphy;vol �
Z
V

r
� � bphy � 2axlr

�
dv: �3b�

Vectorial moments of physical forces are commonly denoted as (physical) torques and are essentially a
measure of the noncentrality of the physical force system acting on V. Thus the statement equivalent to the
quasi-static equilibrium of the noncentral part of physical forces for the subdomain with current con®g-
uration V writes

Tphy;sur � Tphy;vol � 0: �4�
Please recall that the condition to obtain an independent equilibrium equation along the lines of Euler is

the symmetry of r, since only then the volume contribution 2axlr in Eq. (3b) vanishes. The discussion of
the condition for r being symmetric is postponed until the next section.

3.1.3. Scalar moment of physical force
Moreover, with prs��� � ÿ1

3
��� : I denoting the pressure part of a second order tensor ��� in V we may

de®ne the resultant scalar moment of physical surface and volume forces acting on V as

V phy;sur �
Z

oV
r � rt � nda and V phy;vol �

Z
V

r � bphy
� � 3prsr

�
dv: �5�

Scalar moments of physical forces along the lines of M�obius are sometimes denoted as (physical) virials and
are essentially a measure of the centrality of the physical force system acting on V. Thus, the statement
equivalent to the quasi-static equilibrium of the central part of physical forces for the subdomain with
current con®guration V writes as

V phy;sur � V phy;vol � 0: �6�

Fig. 3. Physical viewpoint of direct motion description: physical surface tractions acting on the boundary and physical volume forces

acting in the bulk.
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Please note that Eq. (6) takes the character of an independent equilibrium equation if r is always purely
deviatoric since only then the contribution 3prsr vanishes.

3.1.4. Dyadic moment of physical force
Finally, with the somewhat redundant abbreviation neg��� � ÿ��� for the negative part of a second order

tensor ��� in V, we may de®ne the resultant dyadic moment of physical surface and volume forces acting on
V as

Dphy;sur �
Z

oV
r
 rt � nda and Dphy;vol �

Z
V

r
� 
 bphy � negr

�
dv: �7�

Observe however that the skew-symmetric contributions to Eq. (7) correspond to the contributions to Eqs.
(3a,b). The statement equivalent to the quasi-static equilibrium of physical forces for the subdomain with
current con®guration V writes as

Dphy;sur �Dphy;vol � 0: �8�
For vanishing physical volume forces bphy, Eq. (8) simply relates the average of r in V to the physical
surface forces acting on oV.

3.2. Material viewpoint of inverse motion description

Next we consider an arbitrary subdomain V0 with boundary oV0 of the reference con®guration B0 (Fig.
4). We assume that the subdomain is loaded along oV0 by material surface tractions in terms of the
material Eshelby stress M and the reference surface normal N and within V0 by material volume forces in
terms of distributed material volume forces Bmat, stemming e.g. from material inhomogeneities.

Please observe that the material surface tractions and material volume forces are only obtained as part of
the solution, since they contain information about the deformation as will be lined out in Section 3.2.1.

3.2.1. Material forces
As before, we may de®ne the resultant material surface and volume forces acting on V0 as

Fmat;sur �
Z

oV0

M t �N dA and Fmat;vol �
Z
V0

Bmat dV : �9�

Then, the somewhat unusual statement of quasi-static equilibrium of material forces for the subdomain
with reference con®guration V0 writes along the lines of Eshelby as

Fig. 4. Material viewpoint of inverse motion description: material surface tractions acting on the boundary and material volume forces

acting in the bulk.
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Fmat;sur � Fmat;vol � 0: �10�

3.2.2. Vectorial moment of material forces
Likewise, with R 2M3 denoting the distance vector to a ®xed point in material space and

Axl��� � ÿ1
2
��� � I denoting the axial vector of a second order tensor ��� in V0 we may de®ne the resultant

vectorial moment of material surface and volume forces acting on V0 as

Tmat;sur �
Z

oV0

R�M t �N dA; �11a�

Tmat;vol �
Z
V0

R� � Bmat � 2Axl M�dV : �11b�

Note that our de®nition of the vectorial moment of material forces based on the material vector R is in
contrast to the de®nition advocated by Maugin (1993) which is based on the vector C � R. Vectorial mo-
ments of material forces may be denoted as material torques and are essentially a measure of the non-
centrality of the material force system acting on V0.

Thus, the statement equivalent to the quasi-static equilibrium of the noncentral part of the material
forces for the subdomain with reference con®guration V0 is written as

Tmat;sur � Tmat;vol � 0: �12�
Please note that the volume contribution 2Axl M to Eq. (11b) vanishes only for symmetric M . The dis-
cussion of the condition for M being symmetric is postponed until the next section.

3.2.3. Scalar moment of material forces
Moreover, with prs��� � ÿ1

3
��� : I denoting the pressure part of a second order tensor ��� in V0 we may

de®ne the resultant scalar moment of material surface and volume forces acting on V0 as

V mat;sur �
Z

oV0

R �M t �N dA and V mat;vol �
Z
V0

R � Bmat� � 3prsM�dV : �13�

In analogy to Eq. (5), the scalar moment of material forces may be denoted as material virial and serves as a
measure of the centrality of the material force system acting on V0. Thus, the statement equivalent to the
quasi-static equilibrium of the central part of material forces for the subdomain with reference con®gu-
ration V0 writes as

V mat;sur � V mat;vol � 0: �14�
Please note that the contribution 3prs M to the physical volume virial vanishes only for deviatoric M , in
this case making Eq. (14) an independent equilibrium equation.

3.2.4. Dyadic moment of material forces
Finally, with the abbreviation Neg ��� � ÿ��� for the negative part of a second order tensor ��� in V0, we

may de®ne the resultant dyadic moment of material surface and volume forces as

Dmat;sur �
Z

oV0

R
M t �N dA and Dmat;vol �
Z
V0

R� 
 Bmat �Neg M�dV : �15�

Observe that the skew-symmetric contributions to Eq. (15) correspond to the contributions to Eq. (11a,b).
Then, the statement equivalent to the quasi-static equilibrium of material forces for the subdomain with
reference con®guration V0 writes as
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Dmat;sur �Dmat;vol � 0: �16�
Accordingly, for vanishing material volume forces Bmat, this equation relates the average of M in V0 to the
material surface forces acting on oV0.

4. Quasi-static balance equations

Before discussing the appropriate quasi-static balance equations for a conservative system with hyper-
elastic characterization of the material response it remains to specify the physical and material stress
measures r and M, which we shall denote the spatial Newton stress and the material Eshelby stress, re-
spectively, together with the physical and material distributed body forces bphy and Bmat.

4.1. Hyperelastic characterization of material behavior

For a hyperelastic material response the stored energy density per unit volume in B0 and per unit volume
in B is given by W0 �W0�F; X� and W �W�f ; X�, respectively. Here ����; X� denotes an explicit de-
pendence on the material position X , as an example consider an inhomogeneous distribution of material
constants over B0. An alternative explicit dependence on the spatial position x does not make sense from
the lagrangian viewpoint where either the direct or the inverse motion of the material particles is observed,
i.e. the material particle is considered as being the carrier of physical properties.

On the one hand, physical objectivity, i.e. the common notion of frame indi�erence, requires invariant
response in stored energy density upon superposition of a rigid body motion onto B with F ! F� � Q � F
or f ! f � � f �Qt, respectively, whereby Q 2 SO�3� denotes an arbitrary rotation. Thus, physical objec-
tivity restricts the dependence of W0 on F to W0 �W0�C ; X� and the dependence of W on f to
W �W�B; X�, respectively.

On the other hand material isotropy, with which we shall denote material objectivity in the sequel, re-
quires invariant response in stored energy density upon superposition of a rigid body motion onto B0 with
f ! f � � q � f or F ! F� � F � qt, respectively, whereby q 2 SO�3� denotes an arbitrary rotation. Thus,
material objectivity restricts the dependence of W0 on F to W0 �W0�b; X� and the dependence of W on f
to W �W�c; X�, respectively.

It should be noted that physical objectivity is a general requirement and is therefore mandatory, whereas
material objectivity relates to a speci®c material response and is therefore optional. The consequences of the
di�erent qualities of these requirements on the symmetry of the physical and material stress measures are
highlighted below.

4.1.1. Hyperelastic stress measures of Newton type
In the direct motion setting, the two-point Newton stress and the spatial Newton stress in Fig. 5, which

are called the (direct motion) 1. Piola±Kirchho� stress and the (direct motion) Cauchy stress in common
terminology, follow as

Rt � oFW0; �17a�

rt � jRt � F t �WI ÿ f t � @f W: �17b�
Thereby, the last expression in Eq. (17a,b) denotes the energy-momentum format of the spatial Newton
stress, whereby, without danger of confusion, we omitted the explicit indication of the direct or inverse
motion parametrization for the sake of conciseness.
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Please note that on the one hand, symmetry of the spatial Newton stress r with respect to the standard
euclidian metric is mandatory since it is a consequence of the underlying requirement of physical objectivity
or rather frame indi�erence with W0 �W0�C ; X� and W �W�B; X�, thus, we encounter symmetric ex-
pressions for

@FW0 � F t � 2F � @CW0 � F t and f t � @f W � 2f t � @BW � f �18�
which enter the de®nition of the spatial Newton stress r in Eqs. (17a) and (17b). On the other hand
symmetry of the spatial Newton stress r with respect to the strain metric c, i.e. rt � c � c � r, is only optional
as a consequence of the requirement of material objectivity or rather material isotropy, for a proof refer to
Eq. (20).

4.1.2. Hyperelastic stress measures of Eshelby type
In the inverse motion setting, the two-point Eshelby stress and the material Eshelby stress in Fig. 6,

which might be called the inverse motion 1. Piola±Kirchho� stress and the inverse motion Cauchy stress,
follow as

mt � @f W �19a�

M t � Jmt � f t �W0I ÿ F t � @FW0: �19b�
Thereby, the last expression in Eq. (19a) and (19b) denotes the energy-momentum format of the material
Eshelby stress, whereby, without danger of confusion, we again omitted the explicit indication of the direct
or inverse motion parametrization for the sake of conciseness.

Fig. 5. Direct motion setting ± Newton type 1. Piola±Kirchho� and Cauchy stress derived from stored energy density together with

physical volume forces derived from bulk potential energy density.

Fig. 6. Inverse motion setting ± Eshelby type 1. Piola±Kirchho� and Cauchy stress derived from stored energy density together with

material volume forces derived from bulk potential energy density.
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Please note on the one hand that symmetry of the material Eshelby stress M with respect to the standard
euclidian metric is only optional as a consequence of the requirement of material objectivity or rather
material isotropy with W0 �W0�b; X� and W �W�c; X�; thus, only in this particular case, we encounter
symmetric expressions for

@f W � f t � 2f � @cW � f t and F t � @FW0 � 2F t � @bW0 � F �20�
which enter the de®nition of the material Eshelby stress M in Eq. (19a) and (19b). On the other hand,
symmetry of the material Eshelby stress M with respect to the strain metric C , i.e. M t � C � C �M, is
mandatory since it is a consequence of the requirement of physical objectivity or rather frame indi�erence,
for a proof refer to Eq. (18).

4.2. Physical quasi-static balance equations

4.2.1. Balance of momentum
Firstly, localizing Eq. (2) renders the familiar quasi-static balance of physical momentum commonly

attributed to Cauchy as

ÿDivRt � Bphy () ÿ divrt � bphy: �21�
Here, distributed physical volume forces Bphy � ÿ@xp0 follow from the explicit physical variation of the
bulk potential energy density p0 �W0����; X� ÿ u � Bphy per unit volume in B0. Please observe that the
physical volume force Bphy per unit volume in B0 is considered to be given for the direct motion description
and therefore does not change with a physical variation at ®xed X. Moreover, @xW0 � 0 holds for the
explicit physical gradient of the stored energy density. It shall be noted carefully that the vectorial residuum
of the quasi-static balance of physical momentum has components in physical space. Moreover, please
recall that the quasi-static balance of physical momentum serves for solving the direct motion problem.

4.2.2. Balance of vectorial moment of momentum
Then, localizing Eq. (4) renders additionally the quasi-static balance of vectorial moment of physical

momentum as

ÿDiv�r� Rt� � r� Bphy � 2axl �Jr� () ÿ div�r� rt� � r� bphy � 2axl r: �22�
Taking into account the mandatory symmetry of the spatial Newton stress r with respect to the standard
euclidian metric due to physical objectivity, Eq. (4) and thus Eq. (22) reduces to the well-known quasi-static
format of equilibrium of physical torques.

4.2.3. Balance of scalar moment of momentum
Likewise, localizing Eq. (6) renders additionally the quasi-static `balance' of scalar moment of physical

momentum as

ÿDiv�r � Rt� � r � Bphy � 3prs �Jr� () ÿ div�r � rt� � r � bphy � 3prs r: �23�
For vanishing physical volume forces bphy � 0, Eq. (6) reduces to a simple averaging equation for the
pressure part of the spatial Newton stress r. Recalling the dynamical format of the virial theorem of
classical mechanics, which relates basically the long time average of the kinetic and the potential energy for
conservative systems, we conclude that in the continuum setting, Eq. (23) may be denoted as the quasi-static
format of the virial theorem of physical momentum.
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4.2.4. Balance of dyadic moment of momentum
Finally, localizing Eq. (8) renders additionally the quasi-static `balance' of dyadic moment of physical

momentum as

ÿDiv�r
 Rt� � r
 Bphy � neg �Jr� () ÿ div�r
 rt� � r
 bphy � neg r: �24�
For vanishing physical volume forces bphy � 0, Eq. (8) and thus Eq. (24) reduces to a simple averaging
equation for the spatial Newton stress r.

4.3. Material quasi-static balance equations

4.3.1. Balance of momentum
Next, localizing Eq. (10) renders the quasi-static balance of pseudomomentum commonly attributed to

Eshelby, see the monograph by Maugin (1993) for a detailed justi®cation of the terminology pseudomo-
mentum, as

ÿDiv M t � Bmat () ÿ divmt � bmat: �25�
Here, distributed material volume forces bmat � ÿ@Xp with bmat � ÿ@XWÿ F t � bphy follow from the ex-
plicit material variation of the bulk potential energy density p �W����; /� ÿ /ÿ1 � bphy per unit volume in
B. Please observe that the physical volume force bphy per unit volume in B is considered to be given for the
inverse motion description and therefore does not change with a material variation at ®xed x. Moreover,
since W � jW0, the relation oXW � joXW0 holds for the explicit material gradient of the stored energy
density.

It shall be noted carefully that the vectorial residuum of the quasi-static balance of pseudomomentum
has components in material space. Moreover, please recall that the quasi-static balance of pseudomo-
mentum serves for solving the inverse motion problem.

4.3.2. Balance of vectorial moment of momentum
Then, localizing Eq. (12) renders additionally the quasi-static balance of vectorial moment of pseudo-

momentum as

ÿDiv�R�M t� � R� Bmat � 2Axl M () ÿ div�R�mt� � R� bmat � 2Axl �jM�: �26�
Taking into account the optional symmetry of the material Eshelby stress M with respect to the standard
euclidian metric due to material objectivity, in this case Eq. (12) and thus Eq. (26) reduce to the intuitive
quasi-static format of equilibrium of material torques.

4.3.3. Balance of scalar moment of momentum
Likewise, localizing Eq. (14) renders additionally the quasi-static `balance' of scalar moment of pseu-

domomentum as

ÿDiv�R �M t� � R � Bmat � 3prs M () ÿ div�R �mt� � R � bmat � 3prs �jM�: �27�
For vanishing physical volume forces Bmat � 0, Eq. (14) reduces to a simple averaging equation for the
pressure of the material Eshelby stress M.

4.3.4. Balance of dyadic moment of momentum
Finally, localizing Eq. (16) renders additionally the quasi-static `balance' of dyadic moment of pseu-

domomentum as

ÿDiv�R
M t� � R
 Bmat �Neg M () ÿ div�R
mt� � R
 bmat �Neg �jM�: �28�
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For vanishing physical volume forces Bmat � 0, Eq. (16) and thus Eq. (28) reduces to a simple averaging
equation for the material Eshelby stress M.

Remark 4.1. For a proof of the last expression in Eq. (17a) and (17b), which denotes the energy-momentum
format of the spatial Newton stress, compute the push forward of

Rt � @F �JW� � JWFÿt � J@FW � JWFÿt � J@f W : @Ff � JWFÿt ÿ JFÿt � @f W � Fÿt:

In analogy, for a proof of the last expression in Eq. (19a) and (19b), which denotes the energy-momentum
format of the material Eshelby stress, compute the pull back of

mt � @f �jW0� � jW0f ÿt � j@f W0 � jW0f ÿt � j@FW0 : @f F � jW0f ÿt ÿ jf ÿt � @FW0 � f ÿt:

Remark 4.2. The relation between the quasi-static balances of physical and pseudomomentum may be high-
lighted by observing the following identities:

ÿF t �Div �@FW0� � Div M t ÿ @XW0 and ÿ f t � div �@f W� � divrt ÿ f t � @XW:

For a proof of these identities, we assume su�ciently smooth motions and incorporate the integrability con-
ditions for F and f as given in Section 2.

Remark 4.3. The quasi-static `balances' of scalar moments of physical and pseudomomentum may be related
by taking into account the following identities:

W0 � ÿ prs�Jr�� � prsM � and W � ÿ prsr� � prs�jM��
which follow directly from the energy-momentum formats of the spatial Newton and the material Eshelby
stress in Eqs. (17b) and (19b), respectively.

Remark 4.4. As a ®nal remark we note that we may introduce two alternative stress measures by taking into
account the displacement ®eld u � uÿ X � xÿ / and thus by de®ning the displacement gradients H � F ÿ I
and h � I ÿ f . With these relations at hand the material Newton±Eshelby stress ~M , which is in fact most often
used in geometrically linear fracture mechanics instead of M , and the spatial Newton±Eshelby stress ~m might
be introduced as

~M t �M t � Rt �W0I ÿH t � @FW0 and ~mt � rt �mt �WI � ht � @f W:

Consequently, a corresponding balance of momentum is stated as

ÿDiv ~M t � ~B () ÿ div ~mt � ~b:

Here, the distributed volume forces follow as ~B � Bmat � Bphy and ~b � bphy � bmat, respectively. Indeed, as
commented on by Chadwick (1975), Eshelby essentially employed ~M rather than M in Eshelby (1951, 1956,
1970, 1975). Nevertheless, ~M has the obvious drawback that it is generally non-symmetric with respect to the
standard euclidian metric.

5. Variational form of quasi-static balance equations

It is interesting to recast the quasi-static balances of physical and pseudomomentum in their weak or
rather variational form in order to study the energetic contributions of the di�erent quantities involved.
Moreover, the duality of the direct and the inverse motion point of view is highlighted once again. Finally,
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weak forms constitute the natural point of departure for discretization methods as described in Part II of
this work.

5.1. Physical quasi-static balance equations

Firstly, the pointwise statement in Eq. (21) for the solution of the direct problem is tested by a test
function (physical virtual displacement) w under the necessary smoothness and boundary assumptions to
render the well-known virtual work expressionZ

oB
w � rt � nda|�����������{z�����������}

Ssur

�
Z
B

rxw : rt dv|����������{z����������}
Sint

ÿ
Z
B

w � bphy dv|���������{z���������}
Svol

8w: �29�

The implications of this variational statement, in particular the energetic interpretation of Ssur, Sint and Svol,
are discussed in the sequel.

5.1.1. Energetic interpretation
The di�erent energetic terms in Eq. (29) may be interpreted by considering the physical variation at ®xed

X of the total bulk potential energy, i.e. the quasi-static action integral

dX

Z
B0

p0 dV �
Z
B0

dXW0

� ÿ Bphy � du
�

dV ;

�
Z
B0

oFW0 : rX du
� ÿ Bphy � du

�
dV ;

�
Z
B0

Rt : rX du
� ÿ Bphy � du

�
dV ;

�
Z
B

rt : rxdu
� ÿ bphy � du

�
dv: �30�

Alternatively, as an exercise and for comparison with the corresponding derivations of the inverse
motion viewpoint, we may write for the physical variation of the stored energy contribution to the total
bulk potential energy

dX

Z
B0

W0 dV �
Z
B0

dX �JW�dV ;

�
Z
B0

WdX J� � JdXW�dV ;

�
Z
B

WDivdu
� � @f W : dX f

�
dv;

�
Z
B

�WI ÿ f t � @f W� : rxdudv;

�
Z
B

rt : rxdudv: �31�

Thus, in conclusion, identifying du with the virtual physical displacement w, the contribution Ssur denotes
the physical variation of the total bulk potential energy due to its complete dependence on the position in
physical space, whereas the contributions Sint and Svol denote the physical variations of the total bulk
potential energy due to its implicit and explicit dependence on the position in physical space.
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5.1.2. Balance of momentum
Recall that we recover the quasi-static equilibrium of physical forces in Eq. (2) if we select arbitrary

uniform virtual physical displacements w � h for the evaluation of Eq. (29)

h �
Z

oB
rt � nda

�
�
Z
B

bphy dv
�
� 0 8h 2 E3: �32�

5.1.3. Balance of vectorial moment of momentum
Likewise, the quasi-static equilibrium of vectorial moment of physical forces in Eq. (4) is recovered if we

select arbitrary rotational virtual physical displacements w � h� r for the evaluation of Eq. (29)

h �
Z

oB
r

�
� rt � nda�

Z
B

r
� � bphy � 2axl r

�
dv
�
� 0 8h 2 E3: �33�

5.1.4. Balance of scalar moment of momentum
Moreover, the quasi-static equilibrium of scalar moment of physical forces in Eq. (6) is recovered if we

select arbitrary self similar virtual physical displacements w � hr for the evaluation of Eq. (29)

h
Z

oB
r � rt � nda

�
�
Z
B

r � bphy
� � 3prs r

�
dv
�
� 0 8h 2 R: �34�

5.1.5. Balance of dyadic moment of momentum
Finally, the quasi-static equilibrium of dyadic moment of physical forces in Eq. (6) is recovered if we

select arbitrary virtual physical displacements w � h � r for the evaluation of Eq. (29)

h :

Z
oB

r

�

 rt � n da�

Z
B

r
� 
 bphy � neg r

�
dv
�
� 0 8h 2 E3�3: �35�

5.2. Material quasi-static balance equations

Secondly, the pointwise or strong statement in Eq. (25) for the solution of the inverse problem is tested
by a test function (virtual material displacement) W under the necessary smoothness and boundary as-
sumptions to renderZ

oB0

W �M t �N dA|���������������{z���������������}
M sur

�
Z
B0

rX W : M t dV|��������������{z��������������}
M int

ÿ
Z
B0

W � Bmat dV|������������{z������������}
Mvol

8W : �36�

Remarkably, this variational form of the quasi-static balance of pseudomomentum has already been de-
rived along a di�erent line of arguments by Hill (1986). The implications of this variational statement, in
particular the energetic interpretation of M sur, M int and Mvol, are discussed in the sequel.

5.2.1. Energetic interpretation
Accordingly, the di�erent energetic terms in Eq. (36) may be interpreted by considering the material

variation at ®xed x of the total bulk potential energy, i.e. the quasi-static action integral
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dx

Z
B

pdv �
Z
B

dxW
� ÿ bphy � dx/

ÿ1
�

dv;

�
Z
B

@f W : rxd/
� � �@XW� bphy � F� � d/

�
dv;

�
Z
B

mt : rxd/
� ÿ bmat � d/

�
dv;

�
Z
B0

M t : rX d/� ÿ Bmat � d/�dV : �37�

Please note the extra term in Eq. (37) (line 2) due to the explicit dependence of W on X as compared to the
result of the physical variation in Eq. (30) (line 2). Alternatively, again for comparison with the corre-
sponding derivations of the direct motion viewpoint, we may write for the material variation of the stored
energy contribution to the total bulk potential energy

dx

Z
B

Wdv �
Z
B

dx�jW0�dv;

�
Z
B

W0dxj� � jdxW0�dv;

�
Z
B0

W0Divd/� � @FW0 : dxF � @XW0 � d/�dV ;

�
Z
B0

�W0I� ÿ F t � @FW0� : rX d/� @XW0 � d/�dV ;

�
Z
B0

M t : rX d/� � @XW0 � d/�dV : �38�

Note again the extra term in Eq. (38) (third to ®fth lines) due to the explicit dependence of W on X as
compared to the result of the physical variation in Eq. (31) (third to ®fth lines). Thus, in conclusion,
identifying d/ with the virtual material displacement W , the contribution M sur denotes the material vari-
ation of the total bulk potential energy due to its complete dependence on the position in material space,
whereas the contributions M int and Mvol denote the material variations of the total bulk potential energy
due to its implicit and explicit dependence on the position in material space.

5.2.2. Balance of momentum
Accordingly, observe that we recover the quasi-static equilibrium of material forces in Eq. (10) if we

select arbitrary uniform virtual material displacements W � H for the evaluation of Eq. (36)

H �
Z

oB0

M t �N dA
�

�
Z
B0

Bmat dV
�
� 0 8H 2M3: �39�

5.2.3. Balance of vectorial moment of momentum
Likewise, the quasi-static equilibrium of vectorial moment of material forces in Eq. (12) is recovered if

we select arbitrary rotational virtual material displacements W � H� R for the evaluation of Eq. (36)

H �
Z

oB0

R

�
�M t �N dA�

Z
B0

R� � Bmat � 2Axl M �dV
�
� 0 8H 2M3: �40�
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5.2.4. Balance of scalar moment of momentum
Moreover, the quasi-static equilibrium of scalar moment of material forces in Eq. (14) is recovered if we

select arbitrary self similar virtual material displacements W � HR for the evaluation of Eq. (36)

H
Z

oB0

R �M t �N dA
�

�
Z
B0

R � Bmat� � 3prs M �dV
�
� 0 8H 2 R: �41�

5.2.5. Balance of Dyadic moment of momentum
Finally, the quasi-static equilibrium of dyadic moment of material forces in Eq. (16) is recovered if we

select arbitrary virtual material displacements W � H � R for the evaluation of Eq. (36)

H :

Z
oB0

R

�

M t �N dA�

Z
B0

R� 
 Bmat �Neg M�dV
�
� 0 8H 2M3�3: �42�

Remark 5.1. It is illuminating to note that the two variational formulations in Eqs. (29) and (36) are con-
nected by setting w � ÿW � F t for the relation between the physical and material virtual displacements,
compare also with the relation between the physical and material variations in Section 2. Accordingly, we ®nd

ÿ
Z
B0

w �DivRt dV �
Z
B0

W � F t �DivRt dV � ÿ
Z
B0

W �DivM t dV �
Z
B0

W � @XW0 dV :

Taking into account that ÿDivRt � Bphy, applying integration by parts and ®nally the Gauss theorem renders
the statements in Eqs. (29) and (36).

6. Quasi-static path integrals

As a motivation for the application of material forces we shed a new light on the well-known quasi-static
J- L- and M-integral in the context of hyperelastostatic fracture mechanics. Thereby, since the present
derivations rely entirely on elementary equilibrium considerations in the material space they di�er essen-
tially from well-known expositions in the literature and therefore seem to be new.

6.1. Equilibrium of material forces

To this end, we ®rstly consider an arbitrary subdomain V0 of the reference con®guration B0 in Fig. 7.
Thereby, the boundary oV0 is assumed to be decomposed into a regular and a singular part
oV0 � oVr

0 [ oVs
0 with ; � oVr

0 \ oVs
0. Here the singular part of oV0 denotes a crack tip.

For an inhomogeneous material with nonvanishing distributed material volume forces Bmat 6� 0 within
V0 Eq. (10) renders the following relation between the material surface and volume forces:Z

oV0

M t �N dA � ÿ
Z
V0

Bmat dV : �43�

Taking the decomposition of the boundary oV0 into a regular and a singular boundary into account, the
resulting material force acting on the singular boundary is given by

Fmat;sng :�
Z

oVs
0

M t �N dA � ÿ
Z

oVr
0

M t �N dAÿ
Z
V0

Bmat dV : �44�
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Please note that this material force coincides with the (vectorial) J-integral as originally proposed by Rice
(1968) modulo a change of sign which stems from the integration along the regular part instead along the
singular part of oV0, see also Remarks 6.1 and 6.4.

J � lim
oVr

0
!0

Z
oVr

0

M t �N dA: �45�

6.2. Equilibrium of vectorial moment of material forces

Next, we consider an arbitrary subdomain V0 of the reference con®guration B0 with an embedded
crack, (Fig. 8). To this end the boundary oV0 is assumed to be decomposed into an external and an internal
part oV0 � oVe

0 [ oVi
0 with ; � oVe

0 \ oVi
0. Here the internal part of oV0 encircles the crack.

For an inhomogeneous material with nonvanishing distributed material volume forces Bmat 6� 0 within
V0, Eq. (12) renders the following relation between the vectorial moment of material surface and volume
forces:Z

oV0

R�M t �N dA � ÿ
Z
V0

R� � Bmat � 2Axl M �dV : �46�

Fig. 7. Arbitrary subdomain with regular and singular part of its boundary: a material single force acts on the singular part of the

boundary.

Fig. 8. Arbitrary subdomain with external and internal part of its boundary: a resulting material torque acts on the internal part of the

boundary.
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Taking the decomposition of the boundary oV0 into an external and an internal boundary into account,
the resulting vectorial moment of material forces, i.e. the material torque acting on the internal boundary is
given by

Tmat;int :�
Z

oVi
0

R�M t �N dA � ÿ
Z

oVe
0

R�M t �N dAÿ
Z
V0

R� � Bmat � 2Axl M�dV : �47�

Please note that this material torque essentially coincides with the vectorial L-integral as proposed e.g. by
G�unther (1962), Knowles and Sternberg (1972) and interpreted later on by Budiansky and Rice (1973) for
the geometrically linear case modulo a change of sign which stems from the integration along the external
part instead along the internal part of oV0, see also Remarks 6.1 and 6.4

L � lim
oVe

0
!oVi

0

Z
oVe

0

R�M t �N dA: �48�

6.3. Equilibrium of scalar moment of material forces

Then, we consider again the same subdomain V0 with embedded crack (Fig. 9). For an inhomogeneous
material with nonvanishing distributed material volume forces Bmat 6� 0 within V0, Eq. (14) renders the
following relation between the scalar moments of material surface and volume forces:Z

oV0

R �M t �N dA � ÿ
Z
V0

R � Bmat� � 3prs M�dV : �49�

Taking the decomposition of the boundary oV0 into an external and an internal boundary into account,
the resulting scalar moment of material forces, or rather the material virial, contributed by the internal
boundary is given by

V mat;int :�
Z

oVi
0

R �M t �N dA � ÿ
Z

oVe
0

R �M t �N dAÿ
Z
V0

R � Bmat� � 3prs M �dV : �50�

Please note that this material virial is closely related to the scalar M-integral as proposed for the geo-
metrically linear case e.g. by G�unther (1962), Knowles and Sternberg (1972), see also Remarks 6.2 and 6.4.

Fig. 9. Arbitrary subdomain with external and internal parts of its boundary: a resulting material virial acts on the internal parts of the

boundary.
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6.4. Equilibrium of dyadic moment of material forces

Finally, we consider an arbitrary subdomain V0 of the reference con®guration B0 in Fig. 10. Then, for
an inhomogeneous material with nonvanishing distributed material volume forces Bmat 6� 0 within V0, Eq.
(16) renders the following averaging relation between the dyadic moment of material surface and volume
forcesZ

oV0

R
M t �N dA � ÿ
Z
V0

R� 
 Bmat �Neg M�dV : �51�

As an application, Eq. (51) might in particular be used to compute the average Eshelby stress in V0 from
the boundary data on oV0 for vanishing material volume forces. For further discussion refer to Remark
6.3.

Remark 6.1. Clearly, issues of path dependence of the J- and L-integrals can now easily be discussed based on
straightforward material equilibrium considerations. For example, for unloaded straight crack surfaces, no
physical volume forces and homogeneous material of the component of J parallel to the crack surfaces proves
to be path independent. Likewise, for the case of no physical volume forces and homogeneous, isotropic ma-
terial L proves as well to be path independent.

Remark 6.2. Due to the present de®nition of V mat;int the integral in Eq. (50) is not readily path independent
even for the assumptions of vanishing physical volume forces and homogeneous material. Nevertheless, for
hyperelastic materials with a stored energy function W0 per unit volume in B0 which is homogeneous of degree
k in F, i.e. W0�eF� � ekW0�F� and @FW0 : F � kW0, we may transform the remaining volume integral in Eq.
(50) into a surface integral by noting that kW0 � ÿ3prs �Jr�, thus with the result in Remark 4.3 we have

ÿ
Z
V0

3prs M dV �
Z
V0

3W0� � 3prs �Jr��dV � k ÿ 3

k

Z
V0

3prs �Jr�dV � 3ÿ k
k

Z
oV0

r � Rt �N dA:

Under the aformentioned conditions, we may then de®ne the path independent M-integral via

M � ÿV mat;int ÿ k ÿ 3

k

Z
oVi

0

r � Rt �N dA � lim
oVe

0
!oVi

0

Z
oVe

0

R �M t

�
� k ÿ 3

k
r � Rt

�
�N dA:

Remark 6.3. For vanishing material volume forces and isotropic material, the resulting symmetry of M in Eq.
(51) induces a path integral

Fig. 10. Arbitrary subdomain with material traction on the boundary and material volume force in the bulk.
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Z
oV0

R� 
M t �N �Skw
dA � 0:

This particular version of the symmetry condition for M in the case of isotropy was pointed out by Chadwick
(1975) and Hill (1986). Path independence of the above integral is trivially assured, but of course the numerical
result as such is of no particular practical value. However, the axial vector of the integral �R
M t �N �Skw

is
given by ÿ1

2
R�M t �N , thus for the particular case of homogeneous, isotropic material the above condition

coincides with the equilibrium of vectorial moment of material forces in Eq. (46) and consequently the
L-integral may be recovered.

Remark 6.4. With M � ~M ÿ R we may rewrite the J- and L-integrals for the path independent case with
unloaded crack surfaces and crack tips in a more common way as

J �
Z

oVr
0

~M t �N dA and L �
Z

oVe
0

R
h
� ~M t � u� Rt

i
�N dA:

If in addition we assume alternatively W0 homogeneous of degree k in H the M-integral for the path inde-
pendent case follows in the format familiar in the geometrically linear setting as

M �
Z

oVe
0

R � ~M t

�
� k ÿ 3

k
u � Rt

�
�N dA:

7. Conclusions

The main goal of this work was the application of the notion of material forces to quasi-static hyper-
elastic fracture mechanics. Thereby, once the striking duality of physical and material forces and moreover
the duality of Newton type and Eshelby type stress measures along with the corresponding balance
equations has been accepted, elementary equilibrium considerations in the material space render the
classical J-, L- and M-integrals. To this end, even for the geometrically nonlinear case no assumptions on
the type of singularity or considerations of the energy changes etc are necessary, thus making the present
approach conceptually extremely straightforward and easy. It is in particular this feature, i.e. the possibility
to operate essentially with elementary equilibrium considerations, that constitutes the main bene®t of the
advocated viewpoint. The interpretation of the J-integral as a material force is immediately complemented
by the L- and M-integrals being interpreted as ®rst order moments of material forces. Besides this main
thrust, a number of interesting aspects have been addressed. Symmetry conditions for the Newton type and
Eshelby type stress measures with respect to the standard euclidian and appropriate strain metrics have
been associated with the requirements of physical objectivity, i.e. frame indi�erence, and material objec-
tivity, i.e. material isotropy, respectively. Equilibrium conditions and balance equations associated with
translations in physical and material space have consequently been extended to all possibilities for their ®rst
order moments, whereby conditions for the independence of these additional equations have been discussed
wherever appropriate. Finally, as a prerequisite for discretization methods to be described in Part II of this
work, the weak forms of the quasi-static balance equations have been investigated and the energetic in-
terpretation of the separate terms involved has been discussed.

In summary, it is believed that this contribution clari®es and uni®es issues pertaining to the direct and
inverse motion viewpoint of continuum mechanics with particular application to hyperelastostatic fracture
mechanics. Moreover, it establishes the necessary basis for the forthcoming Part II of this work which will
focus on the computational setting associated to the theoretical consideration advocated in the present Part I.
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